Metamath Proof Explorer


Theorem sbiedv

Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie ). Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbiedvw when possible. (Contributed by NM, 7-Jan-2017) (New usage is discouraged.)

Ref Expression
Hypothesis sbiedv.1 φx=yψχ
Assertion sbiedv φyxψχ

Proof

Step Hyp Ref Expression
1 sbiedv.1 φx=yψχ
2 nfv xφ
3 nfvd φxχ
4 1 ex φx=yψχ
5 2 3 4 sbied φyxψχ