Metamath Proof Explorer


Theorem cbv1

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . See cbv1v with disjoint variable conditions, not depending on ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 3-Oct-2016) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv1.1 xφ
cbv1.2 yφ
cbv1.3 φyψ
cbv1.4 φxχ
cbv1.5 φx=yψχ
Assertion cbv1 φxψyχ

Proof

Step Hyp Ref Expression
1 cbv1.1 xφ
2 cbv1.2 yφ
3 cbv1.3 φyψ
4 cbv1.4 φxχ
5 cbv1.5 φx=yψχ
6 2 3 nfim1 yφψ
7 1 4 nfim1 xφχ
8 5 com12 x=yφψχ
9 8 a2d x=yφψφχ
10 6 7 9 cbv3 xφψyφχ
11 1 19.21 xφψφxψ
12 2 19.21 yφχφyχ
13 10 11 12 3imtr3i φxψφyχ
14 13 pm2.86i φxψyχ