Metamath Proof Explorer


Theorem nfim1

Description: A closed form of nfim . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 2-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)

Ref Expression
Hypotheses nfim1.1 xφ
nfim1.2 φxψ
Assertion nfim1 xφψ

Proof

Step Hyp Ref Expression
1 nfim1.1 xφ
2 nfim1.2 φxψ
3 nf3 xφxφx¬φ
4 1 3 mpbi xφx¬φ
5 nftht xφxφ
6 2 sps xφxψ
7 5 6 nfimd xφxφψ
8 pm2.21 ¬φφψ
9 8 alimi x¬φxφψ
10 nftht xφψxφψ
11 9 10 syl x¬φxφψ
12 7 11 jaoi xφx¬φxφψ
13 4 12 ax-mp xφψ