Metamath Proof Explorer


Theorem cbv2

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . See cbv2w with disjoint variable conditions, not depending on ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 3-Oct-2016) Format hypotheses to common style, avoid ax-10 . (Revised by Wolf Lammen, 10-Sep-2023) (New usage is discouraged.)

Ref Expression
Hypotheses cbv2.1 xφ
cbv2.2 yφ
cbv2.3 φyψ
cbv2.4 φxχ
cbv2.5 φx=yψχ
Assertion cbv2 φxψyχ

Proof

Step Hyp Ref Expression
1 cbv2.1 xφ
2 cbv2.2 yφ
3 cbv2.3 φyψ
4 cbv2.4 φxχ
5 cbv2.5 φx=yψχ
6 biimp ψχψχ
7 5 6 syl6 φx=yψχ
8 1 2 3 4 7 cbv1 φxψyχ
9 equcomi y=xx=y
10 biimpr ψχχψ
11 9 5 10 syl56 φy=xχψ
12 2 1 4 3 11 cbv1 φyχxψ
13 8 12 impbid φxψyχ