Metamath Proof Explorer


Theorem cbvex4v

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)

Ref Expression
Hypotheses cbvex4v.1 x=vy=uφψ
cbvex4v.2 z=fw=gψχ
Assertion cbvex4v xyzwφvufgχ

Proof

Step Hyp Ref Expression
1 cbvex4v.1 x=vy=uφψ
2 cbvex4v.2 z=fw=gψχ
3 1 2exbidv x=vy=uzwφzwψ
4 3 cbvex2vv xyzwφvuzwψ
5 2 cbvex2vv zwψfgχ
6 5 2exbii vuzwψvufgχ
7 4 6 bitri xyzwφvufgχ