Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvex4v.1 | |- ( ( x = v /\ y = u ) -> ( ph <-> ps ) ) |
|
| cbvex4v.2 | |- ( ( z = f /\ w = g ) -> ( ps <-> ch ) ) |
||
| Assertion | cbvex4v | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex4v.1 | |- ( ( x = v /\ y = u ) -> ( ph <-> ps ) ) |
|
| 2 | cbvex4v.2 | |- ( ( z = f /\ w = g ) -> ( ps <-> ch ) ) |
|
| 3 | 1 | 2exbidv | |- ( ( x = v /\ y = u ) -> ( E. z E. w ph <-> E. z E. w ps ) ) |
| 4 | 3 | cbvex2vv | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. z E. w ps ) |
| 5 | 2 | cbvex2vv | |- ( E. z E. w ps <-> E. f E. g ch ) |
| 6 | 5 | 2exbii | |- ( E. v E. u E. z E. w ps <-> E. v E. u E. f E. g ch ) |
| 7 | 4 6 | bitri | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch ) |