Metamath Proof Explorer


Theorem cbvex4v

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)

Ref Expression
Hypotheses cbvex4v.1
|- ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
cbvex4v.2
|- ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
Assertion cbvex4v
|- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )

Proof

Step Hyp Ref Expression
1 cbvex4v.1
 |-  ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
2 cbvex4v.2
 |-  ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
3 1 2exbidv
 |-  ( ( x = v /\ y = u ) -> ( E. z E. w ph <-> E. z E. w ps ) )
4 3 cbvex2vv
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. z E. w ps )
5 2 cbvex2vv
 |-  ( E. z E. w ps <-> E. f E. g ch )
6 5 2exbii
 |-  ( E. v E. u E. z E. w ps <-> E. v E. u E. f E. g ch )
7 4 6 bitri
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )