Metamath Proof Explorer


Theorem cbvex4vw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex4v with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvex4vw.1
|- ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
cbvex4vw.2
|- ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
Assertion cbvex4vw
|- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )

Proof

Step Hyp Ref Expression
1 cbvex4vw.1
 |-  ( ( x = v /\ y = u ) -> ( ph <-> ps ) )
2 cbvex4vw.2
 |-  ( ( z = f /\ w = g ) -> ( ps <-> ch ) )
3 1 2exbidv
 |-  ( ( x = v /\ y = u ) -> ( E. z E. w ph <-> E. z E. w ps ) )
4 3 cbvex2vw
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. z E. w ps )
5 2 cbvex2vw
 |-  ( E. z E. w ps <-> E. f E. g ch )
6 5 2exbii
 |-  ( E. v E. u E. z E. w ps <-> E. v E. u E. f E. g ch )
7 4 6 bitri
 |-  ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch )