Metamath Proof Explorer


Theorem 2sb6rf

Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Feb-2005) (Revised by Mario Carneiro, 6-Oct-2016) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018) (Proof shortened by Wolf Lammen, 13-Apr-2023) (New usage is discouraged.)

Ref Expression
Hypotheses 2sb5rf.1 zφ
2sb5rf.2 wφ
Assertion 2sb6rf φzwz=xw=yzxwyφ

Proof

Step Hyp Ref Expression
1 2sb5rf.1 zφ
2 2sb5rf.2 wφ
3 1 19.23 zwz=xw=yφzwz=xw=yφ
4 2 19.23 wz=xw=yφwz=xw=yφ
5 4 albii zwz=xw=yφzwz=xw=yφ
6 2ax6e zwz=xw=y
7 6 a1bi φzwz=xw=yφ
8 3 5 7 3bitr4ri φzwz=xw=yφ
9 sbequ12r z=xzxwyφwyφ
10 sbequ12r w=ywyφφ
11 9 10 sylan9bb z=xw=yzxwyφφ
12 11 pm5.74i z=xw=yzxwyφz=xw=yφ
13 12 2albii zwz=xw=yzxwyφzwz=xw=yφ
14 8 13 bitr4i φzwz=xw=yzxwyφ