| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sb5rf.1 |  |-  F/ z ph | 
						
							| 2 |  | 2sb5rf.2 |  |-  F/ w ph | 
						
							| 3 | 1 | 19.23 |  |-  ( A. z ( E. w ( z = x /\ w = y ) -> ph ) <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) | 
						
							| 4 | 2 | 19.23 |  |-  ( A. w ( ( z = x /\ w = y ) -> ph ) <-> ( E. w ( z = x /\ w = y ) -> ph ) ) | 
						
							| 5 | 4 | albii |  |-  ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> A. z ( E. w ( z = x /\ w = y ) -> ph ) ) | 
						
							| 6 |  | 2ax6e |  |-  E. z E. w ( z = x /\ w = y ) | 
						
							| 7 | 6 | a1bi |  |-  ( ph <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) | 
						
							| 8 | 3 5 7 | 3bitr4ri |  |-  ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) | 
						
							| 9 |  | sbequ12r |  |-  ( z = x -> ( [ z / x ] [ w / y ] ph <-> [ w / y ] ph ) ) | 
						
							| 10 |  | sbequ12r |  |-  ( w = y -> ( [ w / y ] ph <-> ph ) ) | 
						
							| 11 | 9 10 | sylan9bb |  |-  ( ( z = x /\ w = y ) -> ( [ z / x ] [ w / y ] ph <-> ph ) ) | 
						
							| 12 | 11 | pm5.74i |  |-  ( ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> ( ( z = x /\ w = y ) -> ph ) ) | 
						
							| 13 | 12 | 2albii |  |-  ( A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) | 
						
							| 14 | 8 13 | bitr4i |  |-  ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) ) |