| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ y ph | 
						
							| 2 |  | nfv |  |-  F/ x ph | 
						
							| 3 | 1 2 | 2sb5rf |  |-  ( ph <-> E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) ) | 
						
							| 4 |  | ancom |  |-  ( ( y = w /\ x = z ) <-> ( x = z /\ y = w ) ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) | 
						
							| 6 | 5 | 2exbii |  |-  ( E. y E. x ( ( y = w /\ x = z ) /\ [ y / w ] [ x / z ] ph ) <-> E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) | 
						
							| 7 |  | excom |  |-  ( E. y E. x ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) | 
						
							| 8 | 3 6 7 | 3bitri |  |-  ( ph <-> E. x E. y ( ( x = z /\ y = w ) /\ [ y / w ] [ x / z ] ph ) ) |