| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 3 | 1 2 | 2sb5rf | ⊢ ( 𝜑  ↔  ∃ 𝑦 ∃ 𝑥 ( ( 𝑦  =  𝑤  ∧  𝑥  =  𝑧 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 ) ) | 
						
							| 4 |  | ancom | ⊢ ( ( 𝑦  =  𝑤  ∧  𝑥  =  𝑧 )  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( ( 𝑦  =  𝑤  ∧  𝑥  =  𝑧 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 )  ↔  ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 ) ) | 
						
							| 6 | 5 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑦  =  𝑤  ∧  𝑥  =  𝑧 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 )  ↔  ∃ 𝑦 ∃ 𝑥 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 ) ) | 
						
							| 7 |  | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 )  ↔  ∃ 𝑥 ∃ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 ) ) | 
						
							| 8 | 3 6 7 | 3bitri | ⊢ ( 𝜑  ↔  ∃ 𝑥 ∃ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  ∧  [ 𝑦  /  𝑤 ] [ 𝑥  /  𝑧 ] 𝜑 ) ) |