| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sb5rf.1 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 2 |  | 2sb5rf.2 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 3 | 1 | 19.41 | ⊢ ( ∃ 𝑧 ( ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ( ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 4 | 2 | 19.41 | ⊢ ( ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ( ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 5 | 4 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ∃ 𝑧 ( ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 6 |  | 2ax6e | ⊢ ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) | 
						
							| 7 | 6 | biantrur | ⊢ ( 𝜑  ↔  ( ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 8 | 3 5 7 | 3bitr4ri | ⊢ ( 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 9 |  | sbequ12r | ⊢ ( 𝑧  =  𝑥  →  ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 10 |  | sbequ12r | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 11 | 9 10 | sylan9bb | ⊢ ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  →  ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 12 | 11 | pm5.32i | ⊢ ( ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 13 | 12 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 14 | 8 13 | bitr4i | ⊢ ( 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) ) |