Metamath Proof Explorer


Theorem dvelimf

Description: Version of dvelimv without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Oct-2002) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimf.1 xφ
dvelimf.2 zψ
dvelimf.3 z=yφψ
Assertion dvelimf ¬xx=yxψ

Proof

Step Hyp Ref Expression
1 dvelimf.1 xφ
2 dvelimf.2 zψ
3 dvelimf.3 z=yφψ
4 2 3 equsal zz=yφψ
5 4 bicomi ψzz=yφ
6 nfnae z¬xx=y
7 nfeqf ¬xx=z¬xx=yxz=y
8 7 ancoms ¬xx=y¬xx=zxz=y
9 1 a1i ¬xx=y¬xx=zxφ
10 8 9 nfimd ¬xx=y¬xx=zxz=yφ
11 6 10 nfald2 ¬xx=yxzz=yφ
12 5 11 nfxfrd ¬xx=yxψ