Metamath Proof Explorer


Theorem dvelimdf

Description: Deduction form of dvelimf . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 7-Apr-2004) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimdf.1 xφ
dvelimdf.2 zφ
dvelimdf.3 φxψ
dvelimdf.4 φzχ
dvelimdf.5 φz=yψχ
Assertion dvelimdf φ¬xx=yxχ

Proof

Step Hyp Ref Expression
1 dvelimdf.1 xφ
2 dvelimdf.2 zφ
3 dvelimdf.3 φxψ
4 dvelimdf.4 φzχ
5 dvelimdf.5 φz=yψχ
6 1 3 nfim1 xφψ
7 2 4 nfim1 zφχ
8 5 com12 z=yφψχ
9 8 pm5.74d z=yφψφχ
10 6 7 9 dvelimf ¬xx=yxφχ
11 pm5.5 φφχχ
12 1 11 nfbidf φxφχxχ
13 10 12 imbitrid φ¬xx=yxχ