Metamath Proof Explorer


Theorem hbae

Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker hbaev when possible. (Contributed by NM, 13-May-1993) (Proof shortened by Wolf Lammen, 21-Apr-2018) (New usage is discouraged.)

Ref Expression
Assertion hbae xx=yzxx=y

Proof

Step Hyp Ref Expression
1 sp xx=yx=y
2 axc9 ¬zz=x¬zz=yx=yzx=y
3 1 2 syl7 ¬zz=x¬zz=yxx=yzx=y
4 axc11r zz=xxx=yzx=y
5 axc11 xx=yxx=yyx=y
6 5 pm2.43i xx=yyx=y
7 axc11r zz=yyx=yzx=y
8 6 7 syl5 zz=yxx=yzx=y
9 3 4 8 pm2.61ii xx=yzx=y
10 9 axc4i xx=yxzx=y
11 ax-11 xzx=yzxx=y
12 10 11 syl xx=yzxx=y