Metamath Proof Explorer


Theorem nfsbd

Description: Deduction version of nfsb . (Contributed by NM, 15-Feb-2013) Usage of this theorem is discouraged because it depends on ax-13 . Use nfsbv instead. (New usage is discouraged.)

Ref Expression
Hypotheses nfsbd.1 x φ
nfsbd.2 φ z ψ
Assertion nfsbd φ z y x ψ

Proof

Step Hyp Ref Expression
1 nfsbd.1 x φ
2 nfsbd.2 φ z ψ
3 1 2 alrimi φ x z ψ
4 nfsb4t x z ψ ¬ z z = y z y x ψ
5 3 4 syl φ ¬ z z = y z y x ψ
6 axc16nf z z = y z y x ψ
7 5 6 pm2.61d2 φ z y x ψ