Metamath Proof Explorer


Theorem axc16i

Description: Inference with axc16 as its conclusion. Usage of axc16 is preferred since it requires fewer axioms. (Contributed by NM, 20-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses axc16i.1 x = z φ ψ
axc16i.2 ψ x ψ
Assertion axc16i x x = y φ x φ

Proof

Step Hyp Ref Expression
1 axc16i.1 x = z φ ψ
2 axc16i.2 ψ x ψ
3 nfv z x = y
4 nfv x z = y
5 ax7 x = z x = y z = y
6 3 4 5 cbv3 x x = y z z = y
7 ax7 z = x z = y x = y
8 7 spimvw z z = y x = y
9 equcomi x = y y = x
10 equcomi z = y y = z
11 ax7 y = z y = x z = x
12 10 11 syl z = y y = x z = x
13 9 12 syl5com x = y z = y z = x
14 13 alimdv x = y z z = y z z = x
15 8 14 mpcom z z = y z z = x
16 equcomi z = x x = z
17 16 alimi z z = x z x = z
18 15 17 syl z z = y z x = z
19 1 biimpcd φ x = z ψ
20 19 alimdv φ z x = z z ψ
21 2 nf5i x ψ
22 nfv z φ
23 1 biimprd x = z ψ φ
24 16 23 syl z = x ψ φ
25 21 22 24 cbv3 z ψ x φ
26 20 25 syl6com z x = z φ x φ
27 6 18 26 3syl x x = y φ x φ