Metamath Proof Explorer


Theorem sb4bOLD

Description: Obsolete version of sb4b as of 21-Feb-2024. (Contributed by NM, 27-May-1997) Revise df-sb . (Revised by Wolf Lammen, 25-Jul-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sb4bOLD ¬ x x = t t x φ x x = t φ

Proof

Step Hyp Ref Expression
1 nfeqf2 ¬ x x = t x y = t
2 nfnf1 x x y = t
3 id x y = t x y = t
4 2 3 nfan1 x x y = t y = t
5 equequ2 y = t x = y x = t
6 5 imbi1d y = t x = y φ x = t φ
7 6 adantl x y = t y = t x = y φ x = t φ
8 4 7 albid x y = t y = t x x = y φ x x = t φ
9 8 pm5.74da x y = t y = t x x = y φ y = t x x = t φ
10 1 9 syl ¬ x x = t y = t x x = y φ y = t x x = t φ
11 10 albidv ¬ x x = t y y = t x x = y φ y y = t x x = t φ
12 df-sb t x φ y y = t x x = y φ
13 ax6ev y y = t
14 13 a1bi x x = t φ y y = t x x = t φ
15 19.23v y y = t x x = t φ y y = t x x = t φ
16 14 15 bitr4i x x = t φ y y = t x x = t φ
17 11 12 16 3bitr4g ¬ x x = t t x φ x x = t φ