Description: If y is not free in ph , x is not free in [ y / x ] ph . Closed form of nfs1 . (Contributed by Wolf Lammen, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-nfs1t | ⊢ ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r | ⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
2 | 1 | equcoms | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
3 | 2 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
4 | 3 | drnf1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ Ⅎ 𝑦 𝜑 ) ) |
5 | 4 | biimprd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 | nfsb2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
7 | 6 | a1d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 | 5 7 | pm2.61i | ⊢ ( Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |