Description: If y is not free in ph , x is not free in [ y / x ] ph . Closed form of nfs1 . (Contributed by Wolf Lammen, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-nfs1t | |- ( F/ y ph -> F/ x [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r | |- ( y = x -> ( [ y / x ] ph <-> ph ) ) |
|
2 | 1 | equcoms | |- ( x = y -> ( [ y / x ] ph <-> ph ) ) |
3 | 2 | sps | |- ( A. x x = y -> ( [ y / x ] ph <-> ph ) ) |
4 | 3 | drnf1 | |- ( A. x x = y -> ( F/ x [ y / x ] ph <-> F/ y ph ) ) |
5 | 4 | biimprd | |- ( A. x x = y -> ( F/ y ph -> F/ x [ y / x ] ph ) ) |
6 | nfsb2 | |- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
|
7 | 6 | a1d | |- ( -. A. x x = y -> ( F/ y ph -> F/ x [ y / x ] ph ) ) |
8 | 5 7 | pm2.61i | |- ( F/ y ph -> F/ x [ y / x ] ph ) |