Metamath Proof Explorer


Theorem wl-nfs1t

Description: If y is not free in ph , x is not free in [ y / x ] ph . Closed form of nfs1 . (Contributed by Wolf Lammen, 27-Jul-2019)

Ref Expression
Assertion wl-nfs1t
|- ( F/ y ph -> F/ x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sbequ12r
 |-  ( y = x -> ( [ y / x ] ph <-> ph ) )
2 1 equcoms
 |-  ( x = y -> ( [ y / x ] ph <-> ph ) )
3 2 sps
 |-  ( A. x x = y -> ( [ y / x ] ph <-> ph ) )
4 3 drnf1
 |-  ( A. x x = y -> ( F/ x [ y / x ] ph <-> F/ y ph ) )
5 4 biimprd
 |-  ( A. x x = y -> ( F/ y ph -> F/ x [ y / x ] ph ) )
6 nfsb2
 |-  ( -. A. x x = y -> F/ x [ y / x ] ph )
7 6 a1d
 |-  ( -. A. x x = y -> ( F/ y ph -> F/ x [ y / x ] ph ) )
8 5 7 pm2.61i
 |-  ( F/ y ph -> F/ x [ y / x ] ph )