Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016) Usage of this theorem is discouraged because it depends on ax-13 . Use drnf1v instead. (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dral1.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
Assertion | drnf1 | |- ( A. x x = y -> ( F/ x ph <-> F/ y ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
2 | 1 | dral1 | |- ( A. x x = y -> ( A. x ph <-> A. y ps ) ) |
3 | 1 2 | imbi12d | |- ( A. x x = y -> ( ( ph -> A. x ph ) <-> ( ps -> A. y ps ) ) ) |
4 | 3 | dral1 | |- ( A. x x = y -> ( A. x ( ph -> A. x ph ) <-> A. y ( ps -> A. y ps ) ) ) |
5 | nf5 | |- ( F/ x ph <-> A. x ( ph -> A. x ph ) ) |
|
6 | nf5 | |- ( F/ y ps <-> A. y ( ps -> A. y ps ) ) |
|
7 | 4 5 6 | 3bitr4g | |- ( A. x x = y -> ( F/ x ph <-> F/ y ps ) ) |