Metamath Proof Explorer


Theorem drnf1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 4-Oct-2016) (Revised by BJ, 17-Jun-2019) Avoid ax-10 . (Revised by Gino Giotto, 18-Nov-2024)

Ref Expression
Hypothesis dral1v.1
|- ( A. x x = y -> ( ph <-> ps ) )
Assertion drnf1v
|- ( A. x x = y -> ( F/ x ph <-> F/ y ps ) )

Proof

Step Hyp Ref Expression
1 dral1v.1
 |-  ( A. x x = y -> ( ph <-> ps ) )
2 1 drex1v
 |-  ( A. x x = y -> ( E. x ph <-> E. y ps ) )
3 1 dral1v
 |-  ( A. x x = y -> ( A. x ph <-> A. y ps ) )
4 2 3 imbi12d
 |-  ( A. x x = y -> ( ( E. x ph -> A. x ph ) <-> ( E. y ps -> A. y ps ) ) )
5 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
6 df-nf
 |-  ( F/ y ps <-> ( E. y ps -> A. y ps ) )
7 4 5 6 3bitr4g
 |-  ( A. x x = y -> ( F/ x ph <-> F/ y ps ) )