Metamath Proof Explorer


Theorem dral1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 with a disjoint variable condition, which does not require ax-13 . Remark: the corresponding versions for dral2 and drex2 are instances of albidv and exbidv respectively. (Contributed by NM, 24-Nov-1994) (Revised by BJ, 17-Jun-2019) Base the proof on ax12v . (Revised by Wolf Lammen, 30-Mar-2024) Avoid ax-10 . (Revised by Gino Giotto, 18-Nov-2024)

Ref Expression
Hypothesis dral1v.1
|- ( A. x x = y -> ( ph <-> ps ) )
Assertion dral1v
|- ( A. x x = y -> ( A. x ph <-> A. y ps ) )

Proof

Step Hyp Ref Expression
1 dral1v.1
 |-  ( A. x x = y -> ( ph <-> ps ) )
2 hbaev
 |-  ( A. x x = y -> A. x A. x x = y )
3 2 1 albidh
 |-  ( A. x x = y -> ( A. x ph <-> A. x ps ) )
4 axc11v
 |-  ( A. x x = y -> ( A. x ps -> A. y ps ) )
5 axc11rv
 |-  ( A. x x = y -> ( A. y ps -> A. x ps ) )
6 4 5 impbid
 |-  ( A. x x = y -> ( A. x ps <-> A. y ps ) )
7 3 6 bitrd
 |-  ( A. x x = y -> ( A. x ph <-> A. y ps ) )