Metamath Proof Explorer


Theorem dral1vOLD

Description: Obsolete version of dral1v as of 18-Nov-2024. (Contributed by NM, 24-Nov-1994) (Revised by BJ, 17-Jun-2019) Base the proof on ax12v . (Revised by Wolf Lammen, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dral1v.1
|- ( A. x x = y -> ( ph <-> ps ) )
Assertion dral1vOLD
|- ( A. x x = y -> ( A. x ph <-> A. y ps ) )

Proof

Step Hyp Ref Expression
1 dral1v.1
 |-  ( A. x x = y -> ( ph <-> ps ) )
2 nfa1
 |-  F/ x A. x x = y
3 2 1 albid
 |-  ( A. x x = y -> ( A. x ph <-> A. x ps ) )
4 axc11v
 |-  ( A. x x = y -> ( A. x ps -> A. y ps ) )
5 axc11rv
 |-  ( A. x x = y -> ( A. y ps -> A. x ps ) )
6 4 5 impbid
 |-  ( A. x x = y -> ( A. x ps <-> A. y ps ) )
7 3 6 bitrd
 |-  ( A. x x = y -> ( A. x ph <-> A. y ps ) )