Metamath Proof Explorer


Theorem wl-aleq

Description: The semantics of A. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-aleq ( ∀ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 sp ( ∀ 𝑥 𝑦 = 𝑧𝑦 = 𝑧 )
2 equequ2 ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
3 2 alimi ( ∀ 𝑥 𝑦 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
4 albi ( ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
5 3 4 syl ( ∀ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) )
6 1 5 jca ( ∀ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) )
7 ax7 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
8 7 al2imi ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )
9 8 a1dd ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) )
10 axc9 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) )
11 9 10 bija ( ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )
12 11 impcom ( ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) → ∀ 𝑥 𝑦 = 𝑧 )
13 6 12 impbii ( ∀ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) )