Step |
Hyp |
Ref |
Expression |
1 |
|
sp |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
2 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
4 |
|
albi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
5 |
3 4
|
syl |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) |
6 |
1 5
|
jca |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) ) |
7 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
8 |
7
|
al2imi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
9 |
8
|
a1dd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) ) |
10 |
|
axc9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) ) |
11 |
9 10
|
bija |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) → ∀ 𝑥 𝑦 = 𝑧 ) |
13 |
6 12
|
impbii |
⊢ ( ∀ 𝑥 𝑦 = 𝑧 ↔ ( 𝑦 = 𝑧 ∧ ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 𝑥 = 𝑧 ) ) ) |