| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sp |
|- ( A. x y = z -> y = z ) |
| 2 |
|
equequ2 |
|- ( y = z -> ( x = y <-> x = z ) ) |
| 3 |
2
|
alimi |
|- ( A. x y = z -> A. x ( x = y <-> x = z ) ) |
| 4 |
|
albi |
|- ( A. x ( x = y <-> x = z ) -> ( A. x x = y <-> A. x x = z ) ) |
| 5 |
3 4
|
syl |
|- ( A. x y = z -> ( A. x x = y <-> A. x x = z ) ) |
| 6 |
1 5
|
jca |
|- ( A. x y = z -> ( y = z /\ ( A. x x = y <-> A. x x = z ) ) ) |
| 7 |
|
ax7 |
|- ( x = y -> ( x = z -> y = z ) ) |
| 8 |
7
|
al2imi |
|- ( A. x x = y -> ( A. x x = z -> A. x y = z ) ) |
| 9 |
8
|
a1dd |
|- ( A. x x = y -> ( A. x x = z -> ( y = z -> A. x y = z ) ) ) |
| 10 |
|
axc9 |
|- ( -. A. x x = y -> ( -. A. x x = z -> ( y = z -> A. x y = z ) ) ) |
| 11 |
9 10
|
bija |
|- ( ( A. x x = y <-> A. x x = z ) -> ( y = z -> A. x y = z ) ) |
| 12 |
11
|
impcom |
|- ( ( y = z /\ ( A. x x = y <-> A. x x = z ) ) -> A. x y = z ) |
| 13 |
6 12
|
impbii |
|- ( A. x y = z <-> ( y = z /\ ( A. x x = y <-> A. x x = z ) ) ) |