Metamath Proof Explorer


Theorem wl-aleq

Description: The semantics of A. x y = z . (Contributed by Wolf Lammen, 27-Apr-2018)

Ref Expression
Assertion wl-aleq
|- ( A. x y = z <-> ( y = z /\ ( A. x x = y <-> A. x x = z ) ) )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. x y = z -> y = z )
2 equequ2
 |-  ( y = z -> ( x = y <-> x = z ) )
3 2 alimi
 |-  ( A. x y = z -> A. x ( x = y <-> x = z ) )
4 albi
 |-  ( A. x ( x = y <-> x = z ) -> ( A. x x = y <-> A. x x = z ) )
5 3 4 syl
 |-  ( A. x y = z -> ( A. x x = y <-> A. x x = z ) )
6 1 5 jca
 |-  ( A. x y = z -> ( y = z /\ ( A. x x = y <-> A. x x = z ) ) )
7 ax7
 |-  ( x = y -> ( x = z -> y = z ) )
8 7 al2imi
 |-  ( A. x x = y -> ( A. x x = z -> A. x y = z ) )
9 8 a1dd
 |-  ( A. x x = y -> ( A. x x = z -> ( y = z -> A. x y = z ) ) )
10 axc9
 |-  ( -. A. x x = y -> ( -. A. x x = z -> ( y = z -> A. x y = z ) ) )
11 9 10 bija
 |-  ( ( A. x x = y <-> A. x x = z ) -> ( y = z -> A. x y = z ) )
12 11 impcom
 |-  ( ( y = z /\ ( A. x x = y <-> A. x x = z ) ) -> A. x y = z )
13 6 12 impbii
 |-  ( A. x y = z <-> ( y = z /\ ( A. x x = y <-> A. x x = z ) ) )