Metamath Proof Explorer


Theorem wl-cbvalnae

Description: A more general version of cbval when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf , nfsb2 or dveeq1 . (Contributed by Wolf Lammen, 4-Jun-2019)

Ref Expression
Hypotheses wl-cbvalnae.1 ¬xx=yyφ
wl-cbvalnae.2 ¬xx=yxψ
wl-cbvalnae.3 x=yφψ
Assertion wl-cbvalnae xφyψ

Proof

Step Hyp Ref Expression
1 wl-cbvalnae.1 ¬xx=yyφ
2 wl-cbvalnae.2 ¬xx=yxψ
3 wl-cbvalnae.3 x=yφψ
4 nftru x
5 nftru y
6 1 a1i ¬xx=yyφ
7 2 a1i ¬xx=yxψ
8 3 a1i x=yφψ
9 4 5 6 7 8 wl-cbvalnaed xφyψ
10 9 mptru xφyψ