Metamath Proof Explorer


Theorem wl-cbvalnae

Description: A more general version of cbval when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf , nfsb2 or dveeq1 . (Contributed by Wolf Lammen, 4-Jun-2019)

Ref Expression
Hypotheses wl-cbvalnae.1 ¬ x x = y y φ
wl-cbvalnae.2 ¬ x x = y x ψ
wl-cbvalnae.3 x = y φ ψ
Assertion wl-cbvalnae x φ y ψ

Proof

Step Hyp Ref Expression
1 wl-cbvalnae.1 ¬ x x = y y φ
2 wl-cbvalnae.2 ¬ x x = y x ψ
3 wl-cbvalnae.3 x = y φ ψ
4 nftru x
5 nftru y
6 1 a1i ¬ x x = y y φ
7 2 a1i ¬ x x = y x ψ
8 3 a1i x = y φ ψ
9 4 5 6 7 8 wl-cbvalnaed x φ y ψ
10 9 mptru x φ y ψ