Metamath Proof Explorer


Theorem wl-cbvalnae

Description: A more general version of cbval when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf , nfsb2 or dveeq1 . (Contributed by Wolf Lammen, 4-Jun-2019)

Ref Expression
Hypotheses wl-cbvalnae.1
|- ( -. A. x x = y -> F/ y ph )
wl-cbvalnae.2
|- ( -. A. x x = y -> F/ x ps )
wl-cbvalnae.3
|- ( x = y -> ( ph <-> ps ) )
Assertion wl-cbvalnae
|- ( A. x ph <-> A. y ps )

Proof

Step Hyp Ref Expression
1 wl-cbvalnae.1
 |-  ( -. A. x x = y -> F/ y ph )
2 wl-cbvalnae.2
 |-  ( -. A. x x = y -> F/ x ps )
3 wl-cbvalnae.3
 |-  ( x = y -> ( ph <-> ps ) )
4 nftru
 |-  F/ x T.
5 nftru
 |-  F/ y T.
6 1 a1i
 |-  ( T. -> ( -. A. x x = y -> F/ y ph ) )
7 2 a1i
 |-  ( T. -> ( -. A. x x = y -> F/ x ps ) )
8 3 a1i
 |-  ( T. -> ( x = y -> ( ph <-> ps ) ) )
9 4 5 6 7 8 wl-cbvalnaed
 |-  ( T. -> ( A. x ph <-> A. y ps ) )
10 9 mptru
 |-  ( A. x ph <-> A. y ps )