Description: A more general version of cbval when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf , nfsb2 or dveeq1 . (Contributed by Wolf Lammen, 4-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wl-cbvalnae.1 | |- ( -. A. x x = y -> F/ y ph ) |
|
wl-cbvalnae.2 | |- ( -. A. x x = y -> F/ x ps ) |
||
wl-cbvalnae.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | wl-cbvalnae | |- ( A. x ph <-> A. y ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-cbvalnae.1 | |- ( -. A. x x = y -> F/ y ph ) |
|
2 | wl-cbvalnae.2 | |- ( -. A. x x = y -> F/ x ps ) |
|
3 | wl-cbvalnae.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
4 | nftru | |- F/ x T. |
|
5 | nftru | |- F/ y T. |
|
6 | 1 | a1i | |- ( T. -> ( -. A. x x = y -> F/ y ph ) ) |
7 | 2 | a1i | |- ( T. -> ( -. A. x x = y -> F/ x ps ) ) |
8 | 3 | a1i | |- ( T. -> ( x = y -> ( ph <-> ps ) ) ) |
9 | 4 5 6 7 8 | wl-cbvalnaed | |- ( T. -> ( A. x ph <-> A. y ps ) ) |
10 | 9 | mptru | |- ( A. x ph <-> A. y ps ) |