Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-cbvalnaed
Next ⟩
wl-cbvalnae
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-cbvalnaed
Description:
wl-cbvalnae
with a context.
(Contributed by
Wolf Lammen
, 28-Jul-2019)
Ref
Expression
Hypotheses
wl-cbvalnaed.1
⊢
Ⅎ
x
φ
wl-cbvalnaed.2
⊢
Ⅎ
y
φ
wl-cbvalnaed.3
⊢
φ
→
¬
∀
x
x
=
y
→
Ⅎ
y
ψ
wl-cbvalnaed.4
⊢
φ
→
¬
∀
x
x
=
y
→
Ⅎ
x
χ
wl-cbvalnaed.5
⊢
φ
→
x
=
y
→
ψ
↔
χ
Assertion
wl-cbvalnaed
⊢
φ
→
∀
x
ψ
↔
∀
y
χ
Proof
Step
Hyp
Ref
Expression
1
wl-cbvalnaed.1
⊢
Ⅎ
x
φ
2
wl-cbvalnaed.2
⊢
Ⅎ
y
φ
3
wl-cbvalnaed.3
⊢
φ
→
¬
∀
x
x
=
y
→
Ⅎ
y
ψ
4
wl-cbvalnaed.4
⊢
φ
→
¬
∀
x
x
=
y
→
Ⅎ
x
χ
5
wl-cbvalnaed.5
⊢
φ
→
x
=
y
→
ψ
↔
χ
6
1
2
5
wl-dral1d
⊢
φ
→
∀
x
x
=
y
→
∀
x
ψ
↔
∀
y
χ
7
6
imp
⊢
φ
∧
∀
x
x
=
y
→
∀
x
ψ
↔
∀
y
χ
8
nfnae
⊢
Ⅎ
x
¬
∀
x
x
=
y
9
1
8
nfan
⊢
Ⅎ
x
φ
∧
¬
∀
x
x
=
y
10
wl-nfnae1
⊢
Ⅎ
y
¬
∀
x
x
=
y
11
2
10
nfan
⊢
Ⅎ
y
φ
∧
¬
∀
x
x
=
y
12
3
imp
⊢
φ
∧
¬
∀
x
x
=
y
→
Ⅎ
y
ψ
13
4
imp
⊢
φ
∧
¬
∀
x
x
=
y
→
Ⅎ
x
χ
14
5
adantr
⊢
φ
∧
¬
∀
x
x
=
y
→
x
=
y
→
ψ
↔
χ
15
9
11
12
13
14
cbv2
⊢
φ
∧
¬
∀
x
x
=
y
→
∀
x
ψ
↔
∀
y
χ
16
7
15
pm2.61dan
⊢
φ
→
∀
x
ψ
↔
∀
y
χ