Metamath Proof Explorer


Theorem wl-dral1d

Description: A version of dral1 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a x = y , A. x x = y or ph antecedent. wl-equsal1i and nf5di show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Hypotheses wl-dral1d.1 x φ
wl-dral1d.2 y φ
wl-dral1d.3 φ x = y ψ χ
Assertion wl-dral1d φ x x = y x ψ y χ

Proof

Step Hyp Ref Expression
1 wl-dral1d.1 x φ
2 wl-dral1d.2 y φ
3 wl-dral1d.3 φ x = y ψ χ
4 3 com12 x = y φ ψ χ
5 4 pm5.74d x = y φ ψ φ χ
6 5 sps x x = y φ ψ φ χ
7 6 dral1 x x = y x φ ψ y φ χ
8 1 19.21 x φ ψ φ x ψ
9 2 19.21 y φ χ φ y χ
10 7 8 9 3bitr3g x x = y φ x ψ φ y χ
11 10 pm5.74rd x x = y φ x ψ y χ
12 11 com12 φ x x = y x ψ y χ