Metamath Proof Explorer


Theorem wl-aetr

Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-aetr xx=yxx=zyy=z

Proof

Step Hyp Ref Expression
1 ax7 x=yx=zy=z
2 1 al2imi xx=yxx=zxy=z
3 axc11 xx=yxy=zyy=z
4 2 3 syld xx=yxx=zyy=z