Metamath Proof Explorer


Theorem wl-aetr

Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-aetr x x = y x x = z y y = z

Proof

Step Hyp Ref Expression
1 ax7 x = y x = z y = z
2 1 al2imi x x = y x x = z x y = z
3 axc11 x x = y x y = z y y = z
4 2 3 syld x x = y x x = z y y = z