Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ax11-lem2 | ⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp | ⊢ ( ∀ 𝑢 𝑢 = 𝑦 → 𝑢 = 𝑦 ) | |
2 | aev | ⊢ ( ∀ 𝑥 𝑥 = 𝑢 → ∀ 𝑥 𝑥 = 𝑦 ) | |
3 | pm2.21 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑢 ) ) | |
4 | 2 3 | impbid2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) |
5 | 1 4 | anim12i | ⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑢 = 𝑦 ∧ ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) ) |
6 | wl-aleq | ⊢ ( ∀ 𝑥 𝑢 = 𝑦 ↔ ( 𝑢 = 𝑦 ∧ ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) ) | |
7 | 5 6 | sylibr | ⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 ) |