Metamath Proof Explorer


Theorem wl-ax11-lem2

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem2 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 )

Proof

Step Hyp Ref Expression
1 sp ( ∀ 𝑢 𝑢 = 𝑦𝑢 = 𝑦 )
2 aev ( ∀ 𝑥 𝑥 = 𝑢 → ∀ 𝑥 𝑥 = 𝑦 )
3 pm2.21 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑢 ) )
4 2 3 impbid2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) )
5 1 4 anim12i ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑢 = 𝑦 ∧ ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) )
6 wl-aleq ( ∀ 𝑥 𝑢 = 𝑦 ↔ ( 𝑢 = 𝑦 ∧ ( ∀ 𝑥 𝑥 = 𝑢 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) )
7 5 6 sylibr ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 )