Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-ax11-lem2
Next ⟩
wl-ax11-lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-ax11-lem2
Description:
Lemma.
(Contributed by
Wolf Lammen
, 30-Jun-2019)
Ref
Expression
Assertion
wl-ax11-lem2
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
x
u
=
y
Proof
Step
Hyp
Ref
Expression
1
sp
⊢
∀
u
u
=
y
→
u
=
y
2
aev
⊢
∀
x
x
=
u
→
∀
x
x
=
y
3
pm2.21
⊢
¬
∀
x
x
=
y
→
∀
x
x
=
y
→
∀
x
x
=
u
4
2
3
impbid2
⊢
¬
∀
x
x
=
y
→
∀
x
x
=
u
↔
∀
x
x
=
y
5
1
4
anim12i
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
u
=
y
∧
∀
x
x
=
u
↔
∀
x
x
=
y
6
wl-aleq
⊢
∀
x
u
=
y
↔
u
=
y
∧
∀
x
x
=
u
↔
∀
x
x
=
y
7
5
6
sylibr
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
x
u
=
y