Metamath Proof Explorer


Theorem wl-ax11-lem2

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem2 u u = y ¬ x x = y x u = y

Proof

Step Hyp Ref Expression
1 sp u u = y u = y
2 aev x x = u x x = y
3 pm2.21 ¬ x x = y x x = y x x = u
4 2 3 impbid2 ¬ x x = y x x = u x x = y
5 1 4 anim12i u u = y ¬ x x = y u = y x x = u x x = y
6 wl-aleq x u = y u = y x x = u x x = y
7 5 6 sylibr u u = y ¬ x x = y x u = y