Metamath Proof Explorer


Theorem wl-ax11-lem2

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem2
|- ( ( A. u u = y /\ -. A. x x = y ) -> A. x u = y )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. u u = y -> u = y )
2 aev
 |-  ( A. x x = u -> A. x x = y )
3 pm2.21
 |-  ( -. A. x x = y -> ( A. x x = y -> A. x x = u ) )
4 2 3 impbid2
 |-  ( -. A. x x = y -> ( A. x x = u <-> A. x x = y ) )
5 1 4 anim12i
 |-  ( ( A. u u = y /\ -. A. x x = y ) -> ( u = y /\ ( A. x x = u <-> A. x x = y ) ) )
6 wl-aleq
 |-  ( A. x u = y <-> ( u = y /\ ( A. x x = u <-> A. x x = y ) ) )
7 5 6 sylibr
 |-  ( ( A. u u = y /\ -. A. x x = y ) -> A. x u = y )