Metamath Proof Explorer


Theorem aev

Description: A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent. (Contributed by NM, 8-Nov-2006) Remove dependency on ax-11 . (Revised by Wolf Lammen, 7-Sep-2018) Remove dependency on ax-13 , inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019) Remove dependency on ax-12 . (Revised by Wolf Lammen, 19-Mar-2021)

Ref Expression
Assertion aev
|- ( A. x x = y -> A. z t = u )

Proof

Step Hyp Ref Expression
1 aevlem
 |-  ( A. x x = y -> A. v v = w )
2 aeveq
 |-  ( A. v v = w -> t = u )
3 2 alrimiv
 |-  ( A. v v = w -> A. z t = u )
4 1 3 syl
 |-  ( A. x x = y -> A. z t = u )