Step |
Hyp |
Ref |
Expression |
1 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
2 |
|
naev |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑢 𝑢 = 𝑥 ) |
3 |
|
nfa1 |
⊢ Ⅎ 𝑢 ∀ 𝑢 𝑢 = 𝑦 |
4 |
|
nfna1 |
⊢ Ⅎ 𝑢 ¬ ∀ 𝑢 𝑢 = 𝑥 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑢 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) |
6 |
|
axc11n |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 ) |
7 |
|
wl-aetr |
⊢ ( ∀ 𝑦 𝑦 = 𝑢 → ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑢 𝑢 = 𝑥 ) ) |
8 |
6 7
|
syl5 |
⊢ ( ∀ 𝑦 𝑦 = 𝑢 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑢 𝑢 = 𝑥 ) ) |
9 |
8
|
aecoms |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑢 𝑢 = 𝑥 ) ) |
10 |
9
|
con3d |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑢 𝑢 = 𝑥 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
11 |
10
|
imdistani |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
12 |
|
wl-ax11-lem2 |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 ) |
13 |
11 12
|
syl |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ∀ 𝑥 𝑢 = 𝑦 ) |
14 |
5 13
|
alrimi |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ∀ 𝑢 ∀ 𝑥 𝑢 = 𝑦 ) |
15 |
2 14
|
sylan2 |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑢 ∀ 𝑥 𝑢 = 𝑦 ) |
16 |
15
|
expcom |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑦 → ∀ 𝑢 ∀ 𝑥 𝑢 = 𝑦 ) ) |
17 |
|
ax-wl-11v |
⊢ ( ∀ 𝑢 ∀ 𝑥 𝑢 = 𝑦 → ∀ 𝑥 ∀ 𝑢 𝑢 = 𝑦 ) |
18 |
16 17
|
syl6 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑦 → ∀ 𝑥 ∀ 𝑢 𝑢 = 𝑦 ) ) |
19 |
1 18
|
nf5d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑢 𝑢 = 𝑦 ) |