| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfna1 | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 2 |  | naev | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑢 𝑢  =  𝑥 ) | 
						
							| 3 |  | nfa1 | ⊢ Ⅎ 𝑢 ∀ 𝑢 𝑢  =  𝑦 | 
						
							| 4 |  | nfna1 | ⊢ Ⅎ 𝑢 ¬  ∀ 𝑢 𝑢  =  𝑥 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑢 ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑢 𝑢  =  𝑥 ) | 
						
							| 6 |  | axc11n | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 𝑦  =  𝑥 ) | 
						
							| 7 |  | wl-aetr | ⊢ ( ∀ 𝑦 𝑦  =  𝑢  →  ( ∀ 𝑦 𝑦  =  𝑥  →  ∀ 𝑢 𝑢  =  𝑥 ) ) | 
						
							| 8 | 6 7 | syl5 | ⊢ ( ∀ 𝑦 𝑦  =  𝑢  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑢 𝑢  =  𝑥 ) ) | 
						
							| 9 | 8 | aecoms | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑢 𝑢  =  𝑥 ) ) | 
						
							| 10 | 9 | con3d | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ¬  ∀ 𝑢 𝑢  =  𝑥  →  ¬  ∀ 𝑥 𝑥  =  𝑦 ) ) | 
						
							| 11 | 10 | imdistani | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑢 𝑢  =  𝑥 )  →  ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 ) ) | 
						
							| 12 |  | wl-ax11-lem2 | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ∀ 𝑥 𝑢  =  𝑦 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑢 𝑢  =  𝑥 )  →  ∀ 𝑥 𝑢  =  𝑦 ) | 
						
							| 14 | 5 13 | alrimi | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑢 𝑢  =  𝑥 )  →  ∀ 𝑢 ∀ 𝑥 𝑢  =  𝑦 ) | 
						
							| 15 | 2 14 | sylan2 | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ∀ 𝑢 ∀ 𝑥 𝑢  =  𝑦 ) | 
						
							| 16 | 15 | expcom | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑢 𝑢  =  𝑦  →  ∀ 𝑢 ∀ 𝑥 𝑢  =  𝑦 ) ) | 
						
							| 17 |  | ax-wl-11v | ⊢ ( ∀ 𝑢 ∀ 𝑥 𝑢  =  𝑦  →  ∀ 𝑥 ∀ 𝑢 𝑢  =  𝑦 ) | 
						
							| 18 | 16 17 | syl6 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑢 𝑢  =  𝑦  →  ∀ 𝑥 ∀ 𝑢 𝑢  =  𝑦 ) ) | 
						
							| 19 | 1 18 | nf5d | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 ∀ 𝑢 𝑢  =  𝑦 ) |