Metamath Proof Explorer


Theorem wl-ax11-lem3

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem3 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥𝑢 𝑢 = 𝑦 )

Proof

Step Hyp Ref Expression
1 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
2 naev ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑢 𝑢 = 𝑥 )
3 nfa1 𝑢𝑢 𝑢 = 𝑦
4 nfna1 𝑢 ¬ ∀ 𝑢 𝑢 = 𝑥
5 3 4 nfan 𝑢 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 )
6 axc11n ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑦 = 𝑥 )
7 wl-aetr ( ∀ 𝑦 𝑦 = 𝑢 → ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑢 𝑢 = 𝑥 ) )
8 6 7 syl5 ( ∀ 𝑦 𝑦 = 𝑢 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑢 𝑢 = 𝑥 ) )
9 8 aecoms ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑢 𝑢 = 𝑥 ) )
10 9 con3d ( ∀ 𝑢 𝑢 = 𝑦 → ( ¬ ∀ 𝑢 𝑢 = 𝑥 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) )
11 10 imdistani ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) )
12 wl-ax11-lem2 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 𝑢 = 𝑦 )
13 11 12 syl ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ∀ 𝑥 𝑢 = 𝑦 )
14 5 13 alrimi ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑢 𝑢 = 𝑥 ) → ∀ 𝑢𝑥 𝑢 = 𝑦 )
15 2 14 sylan2 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑢𝑥 𝑢 = 𝑦 )
16 15 expcom ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑦 → ∀ 𝑢𝑥 𝑢 = 𝑦 ) )
17 ax-wl-11v ( ∀ 𝑢𝑥 𝑢 = 𝑦 → ∀ 𝑥𝑢 𝑢 = 𝑦 )
18 16 17 syl6 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑢 𝑢 = 𝑦 → ∀ 𝑥𝑢 𝑢 = 𝑦 ) )
19 1 18 nf5d ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥𝑢 𝑢 = 𝑦 )