Metamath Proof Explorer


Theorem wl-ax11-lem4

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem4 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 ancom ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ↔ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) )
2 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
3 wl-ax11-lem3 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥𝑢 𝑢 = 𝑦 )
4 2 3 nfan1 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 )
5 1 4 nfxfr 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )