Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-ax11-lem4 | ⊢ Ⅎ 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom | ⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ↔ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) ) | |
| 2 | nfna1 | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 3 | wl-ax11-lem3 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑢 𝑢 = 𝑦 ) | |
| 4 | 2 3 | nfan1 | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) | 
| 5 | 1 4 | nfxfr | ⊢ Ⅎ 𝑥 ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |