Metamath Proof Explorer


Theorem wl-ax11-lem4

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem4 xuu=y¬xx=y

Proof

Step Hyp Ref Expression
1 ancom uu=y¬xx=y¬xx=yuu=y
2 nfna1 x¬xx=y
3 wl-ax11-lem3 ¬xx=yxuu=y
4 2 3 nfan1 x¬xx=yuu=y
5 1 4 nfxfr xuu=y¬xx=y