Metamath Proof Explorer


Theorem wl-ax11-lem4

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem4 x u u = y ¬ x x = y

Proof

Step Hyp Ref Expression
1 ancom u u = y ¬ x x = y ¬ x x = y u u = y
2 nfna1 x ¬ x x = y
3 wl-ax11-lem3 ¬ x x = y x u u = y
4 2 3 nfan1 x ¬ x x = y u u = y
5 1 4 nfxfr x u u = y ¬ x x = y