Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ax11-lem4 | |- F/ x ( A. u u = y /\ -. A. x x = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom | |- ( ( A. u u = y /\ -. A. x x = y ) <-> ( -. A. x x = y /\ A. u u = y ) ) |
|
2 | nfna1 | |- F/ x -. A. x x = y |
|
3 | wl-ax11-lem3 | |- ( -. A. x x = y -> F/ x A. u u = y ) |
|
4 | 2 3 | nfan1 | |- F/ x ( -. A. x x = y /\ A. u u = y ) |
5 | 1 4 | nfxfr | |- F/ x ( A. u u = y /\ -. A. x x = y ) |