Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ax11-lem5 | |- ( A. u u = y -> ( A. u [ u / y ] ph <-> A. y ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12r | |- ( u = y -> ( [ u / y ] ph <-> ph ) ) |
|
2 | 1 | sps | |- ( A. u u = y -> ( [ u / y ] ph <-> ph ) ) |
3 | 2 | dral1 | |- ( A. u u = y -> ( A. u [ u / y ] ph <-> A. y ph ) ) |