Metamath Proof Explorer


Theorem wl-ax11-lem5

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem5
|- ( A. u u = y -> ( A. u [ u / y ] ph <-> A. y ph ) )

Proof

Step Hyp Ref Expression
1 sbequ12r
 |-  ( u = y -> ( [ u / y ] ph <-> ph ) )
2 1 sps
 |-  ( A. u u = y -> ( [ u / y ] ph <-> ph ) )
3 2 dral1
 |-  ( A. u u = y -> ( A. u [ u / y ] ph <-> A. y ph ) )