Metamath Proof Explorer


Theorem wl-ax11-lem5

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem5 ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sbequ12r ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑦 ] 𝜑𝜑 ) )
2 1 sps ( ∀ 𝑢 𝑢 = 𝑦 → ( [ 𝑢 / 𝑦 ] 𝜑𝜑 ) )
3 2 dral1 ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) )