| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-wl-11v | ⊢ ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  →  ∀ 𝑥 ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑 ) | 
						
							| 2 |  | ax-wl-11v | ⊢ ( ∀ 𝑥 ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑  →  ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑 ) | 
						
							| 3 | 1 2 | impbii | ⊢ ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑 ) | 
						
							| 4 |  | nfna1 | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 5 |  | wl-ax11-lem3 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 ∀ 𝑢 𝑢  =  𝑦 ) | 
						
							| 6 | 4 5 | nfan1 | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑢 𝑢  =  𝑦 ) | 
						
							| 7 |  | wl-ax11-lem5 | ⊢ ( ∀ 𝑢 𝑢  =  𝑦  →  ( ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 𝜑 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑢 𝑢  =  𝑦 )  →  ( ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑦 𝜑 ) ) | 
						
							| 9 | 6 8 | albid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ∀ 𝑢 𝑢  =  𝑦 )  →  ( ∀ 𝑥 ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 𝜑 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ( ∀ 𝑥 ∀ 𝑢 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 𝜑 ) ) | 
						
							| 11 | 3 10 | bitrid | ⊢ ( ( ∀ 𝑢 𝑢  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  ( ∀ 𝑢 ∀ 𝑥 [ 𝑢  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |