Metamath Proof Explorer


Theorem wl-ax11-lem6

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem6 ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-wl-11v ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 → ∀ 𝑥𝑢 [ 𝑢 / 𝑦 ] 𝜑 )
2 ax-wl-11v ( ∀ 𝑥𝑢 [ 𝑢 / 𝑦 ] 𝜑 → ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 )
3 1 2 impbii ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑢 [ 𝑢 / 𝑦 ] 𝜑 )
4 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
5 wl-ax11-lem3 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥𝑢 𝑢 = 𝑦 )
6 4 5 nfan1 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 )
7 wl-ax11-lem5 ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) )
8 7 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) )
9 6 8 albid ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) → ( ∀ 𝑥𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )
10 9 ancoms ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )
11 3 10 syl5bb ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )