Step |
Hyp |
Ref |
Expression |
1 |
|
ax-wl-11v |
⊢ ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 → ∀ 𝑥 ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ) |
2 |
|
ax-wl-11v |
⊢ ( ∀ 𝑥 ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 → ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ) |
3 |
1 2
|
impbii |
⊢ ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ) |
4 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
5 |
|
wl-ax11-lem3 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑢 𝑢 = 𝑦 ) |
6 |
4 5
|
nfan1 |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) |
7 |
|
wl-ax11-lem5 |
⊢ ( ∀ 𝑢 𝑢 = 𝑦 → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
8 |
7
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) → ( ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
9 |
6 8
|
albid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑢 𝑢 = 𝑦 ) → ( ∀ 𝑥 ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |
10 |
9
|
ancoms |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑥 ∀ 𝑢 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |
11 |
3 10
|
syl5bb |
⊢ ( ( ∀ 𝑢 𝑢 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑢 ∀ 𝑥 [ 𝑢 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |