Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-ax11-lem6
Next ⟩
wl-ax11-lem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-ax11-lem6
Description:
Lemma.
(Contributed by
Wolf Lammen
, 30-Jun-2019)
Ref
Expression
Assertion
wl-ax11-lem6
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
u
∀
x
u
y
φ
↔
∀
x
∀
y
φ
Proof
Step
Hyp
Ref
Expression
1
ax-wl-11v
⊢
∀
u
∀
x
u
y
φ
→
∀
x
∀
u
u
y
φ
2
ax-wl-11v
⊢
∀
x
∀
u
u
y
φ
→
∀
u
∀
x
u
y
φ
3
1
2
impbii
⊢
∀
u
∀
x
u
y
φ
↔
∀
x
∀
u
u
y
φ
4
nfna1
⊢
Ⅎ
x
¬
∀
x
x
=
y
5
wl-ax11-lem3
⊢
¬
∀
x
x
=
y
→
Ⅎ
x
∀
u
u
=
y
6
4
5
nfan1
⊢
Ⅎ
x
¬
∀
x
x
=
y
∧
∀
u
u
=
y
7
wl-ax11-lem5
⊢
∀
u
u
=
y
→
∀
u
u
y
φ
↔
∀
y
φ
8
7
adantl
⊢
¬
∀
x
x
=
y
∧
∀
u
u
=
y
→
∀
u
u
y
φ
↔
∀
y
φ
9
6
8
albid
⊢
¬
∀
x
x
=
y
∧
∀
u
u
=
y
→
∀
x
∀
u
u
y
φ
↔
∀
x
∀
y
φ
10
9
ancoms
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
x
∀
u
u
y
φ
↔
∀
x
∀
y
φ
11
3
10
syl5bb
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
u
∀
x
u
y
φ
↔
∀
x
∀
y
φ