Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imdistani.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | imdistani | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | anc2li | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜒 ) ) ) |
3 | 2 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜒 ) ) |