Metamath Proof Explorer


Theorem ax1ne0

Description: 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 . (Contributed by NM, 19-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion ax1ne0
|- 1 =/= 0

Proof

Step Hyp Ref Expression
1 1ne0sr
 |-  -. 1R = 0R
2 1sr
 |-  1R e. R.
3 2 elexi
 |-  1R e. _V
4 3 eqresr
 |-  ( <. 1R , 0R >. = <. 0R , 0R >. <-> 1R = 0R )
5 1 4 mtbir
 |-  -. <. 1R , 0R >. = <. 0R , 0R >.
6 df-1
 |-  1 = <. 1R , 0R >.
7 df-0
 |-  0 = <. 0R , 0R >.
8 6 7 eqeq12i
 |-  ( 1 = 0 <-> <. 1R , 0R >. = <. 0R , 0R >. )
9 5 8 mtbir
 |-  -. 1 = 0
10 9 neir
 |-  1 =/= 0