Metamath Proof Explorer


Theorem ax3h

Description: Recover ax-3 from hirstL-ax3 . (Contributed by Jarvin Udandy, 3-Jul-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax3h
|- ( ( -. ph -> -. ps ) -> ( ps -> ph ) )

Proof

Step Hyp Ref Expression
1 hirstL-ax3
 |-  ( ( -. ph -> -. ps ) -> ( ( -. ph -> ps ) -> ph ) )
2 jarr
 |-  ( ( ( -. ph -> ps ) -> ph ) -> ( ps -> ph ) )
3 1 2 syl
 |-  ( ( -. ph -> -. ps ) -> ( ps -> ph ) )