Metamath Proof Explorer


Theorem hirstL-ax3

Description: The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of Mendelson p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015) (Proof modification is discouraged.)

Ref Expression
Assertion hirstL-ax3
|- ( ( -. ph -> -. ps ) -> ( ( -. ph -> ps ) -> ph ) )

Proof

Step Hyp Ref Expression
1 pm4.64
 |-  ( ( -. ph -> ps ) <-> ( ph \/ ps ) )
2 pm4.66
 |-  ( ( -. ph -> -. ps ) <-> ( ph \/ -. ps ) )
3 pm2.64
 |-  ( ( ph \/ ps ) -> ( ( ph \/ -. ps ) -> ph ) )
4 3 com12
 |-  ( ( ph \/ -. ps ) -> ( ( ph \/ ps ) -> ph ) )
5 2 4 sylbi
 |-  ( ( -. ph -> -. ps ) -> ( ( ph \/ ps ) -> ph ) )
6 1 5 syl5bi
 |-  ( ( -. ph -> -. ps ) -> ( ( -. ph -> ps ) -> ph ) )