Description: Theorem to add distinct quantifier to atomic formula. This theorem demonstrates the induction basis for ax-5 considered as a metatheorem.) (Contributed by NM, 22-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax5el | |- ( x e. y -> A. z x e. y ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-c14 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) | |
| 2 | ax-c16 | |- ( A. z z = x -> ( x e. y -> A. z x e. y ) ) | |
| 3 | ax-c16 | |- ( A. z z = y -> ( x e. y -> A. z x e. y ) ) | |
| 4 | 1 2 3 | pm2.61ii | |- ( x e. y -> A. z x e. y ) |