Step |
Hyp |
Ref |
Expression |
1 |
|
axsegconlem2.1 |
|- S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
2 |
|
fzfid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1 ... N ) e. Fin ) |
3 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ p e. ( 1 ... N ) ) -> ( A ` p ) e. RR ) |
4 |
3
|
adantlr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( A ` p ) e. RR ) |
5 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ p e. ( 1 ... N ) ) -> ( B ` p ) e. RR ) |
6 |
5
|
adantll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( B ` p ) e. RR ) |
7 |
4 6
|
resubcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( ( A ` p ) - ( B ` p ) ) e. RR ) |
8 |
7
|
resqcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) e. RR ) |
9 |
7
|
sqge0d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) |
10 |
2 8 9
|
fsumge0 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) |
11 |
10 1
|
breqtrrdi |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ S ) |