| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axsegconlem2.1 |  |-  S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) | 
						
							| 2 |  | fzfid |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 3 |  | fveere |  |-  ( ( A e. ( EE ` N ) /\ p e. ( 1 ... N ) ) -> ( A ` p ) e. RR ) | 
						
							| 4 | 3 | adantlr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( A ` p ) e. RR ) | 
						
							| 5 |  | fveere |  |-  ( ( B e. ( EE ` N ) /\ p e. ( 1 ... N ) ) -> ( B ` p ) e. RR ) | 
						
							| 6 | 5 | adantll |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( B ` p ) e. RR ) | 
						
							| 7 | 4 6 | resubcld |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( ( A ` p ) - ( B ` p ) ) e. RR ) | 
						
							| 8 | 7 | resqcld |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) e. RR ) | 
						
							| 9 | 7 | sqge0d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ p e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) | 
						
							| 10 | 2 8 9 | fsumge0 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) | 
						
							| 11 | 10 1 | breqtrrdi |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ S ) |