Metamath Proof Explorer


Theorem axsegconlem3

Description: Lemma for axsegcon . Show that the square of the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013)

Ref Expression
Hypothesis axsegconlem2.1 𝑆 = Σ 𝑝 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ↑ 2 )
Assertion axsegconlem3 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 0 ≤ 𝑆 )

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 𝑆 = Σ 𝑝 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ↑ 2 )
2 fzfid ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin )
3 fveere ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝑝 ) ∈ ℝ )
4 3 adantlr ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝑝 ) ∈ ℝ )
5 fveere ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵𝑝 ) ∈ ℝ )
6 5 adantll ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵𝑝 ) ∈ ℝ )
7 4 6 resubcld ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ∈ ℝ )
8 7 resqcld ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ↑ 2 ) ∈ ℝ )
9 7 sqge0d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑝 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ↑ 2 ) )
10 2 8 9 fsumge0 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 0 ≤ Σ 𝑝 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴𝑝 ) − ( 𝐵𝑝 ) ) ↑ 2 ) )
11 10 1 breqtrrdi ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 0 ≤ 𝑆 )